Journal of Nonlinear

Journal of Nonlinear Analysis and Optimization Anafysis and

Vol. 16, Issue. 1: 2025 éﬁ"i”m'”;i‘i;‘;’”a;m

ISSN : 1906-9685 -
Editors-in-Chief
Sorer g™

Deparment of Mathematics Taculty of Scecs,
Nwsian Unieriy, Tholand

CHAT APP

Santosh Kumar Sahoo
Sai Sankar Patra
Dept. of Master of Computer Science
Email ID: kumarsah002023@gift.edu.in
Email ID: sspatra2023@gift.edu.in

Dr. Pratyush Ranjan Mohapatra
Assistant Professor, Department of MCA, GIFT Autonomous, Bhubaneswar, BPUT, India
Email ID: pratyush@gift.edu.in

ABSTRACT :

Conversation has become an essential tool in bridging distances and fostering global connectivity,
and technology plays a central role in making this possible. The advancement of web technologies
and real-time communication protocols has paved the way for chat applications that are faster, more
interactive, and more accessible. Our project is a practical implementation of such a system, using the
MERN stack—MongoDB, Express.js, React.js, and Node.js—to build a modern, scalable, and user-
friendly chat platform. The system consists of a server-side application responsible for handling real-
time data exchange and a client-side interface for users to interact seamlessly. It supports features like
one-on-one messaging, group chats, and media sharing, including files, images, and videos. The
integration of Socket.io ensures instant communication, while MongoDB handles the storage of chat
history and user data securely. With the rise of remote work, online learning, and digital
communities, this application demonstrates how efficient and secure communication tools are crucial
in today’s interconnected world. Designed with scalability and performance in mind, this app holds
potential for deployment across various sectors, including educational institutions, corporate
environments, and community networks, making it a valuable contribution to the evolution of digital
communication.

Keywords- Chat-App, React.js, Node.js, Express.js and MongoDB

INTRODUCTION:

In today’s fast-paced digital world, developers and engineers are under increasing pressure to deliver
high-quality web applications within strict deadlines. To meet these demands, many have turned to
modern development stacks that streamline the process of building, deploying, and scaling
applications. Among these, the MERN stack comprising MongoDB, Express.js, React.js, and Node.js
has emerged as a powerful and popular choice. This stack allows developers to use JavaScript across
the entire development process, eliminating the need to switch between languages for front-end and
back-end tasks. This unified approach not only enhances efficiency but also minimizes errors,
improves consistency, and accelerates the overall development timeline.

MERN, like its counterpart MEAN, is made up entirely of open-source components, making it
accessible and widely supported by the developer community. One of the key advantages of the

1373 JNAO Vol. 16, Issue. 1: 2025

MERN stack is its flexibility and adaptability, which allows developers to build everything from
small-scale applications to complex, data-driven systems. React.js enhances the user

experience with dynamic and responsive interfaces, while Node.js and Express.js provide a robust
backend capable of handling real-time data and high-performance networking.

MongoDB, being a NoSQL database, offers scalable and flexible data storage. Together, these
components provide a comprehensive solution for developing full-stack web applications.

Using the MERN stack also aligns with current trends in web development, where single-page
applications (SPAs), real-time features, and cross-platform compatibility are in high demand. With
the growing reliance on cloud computing and remote access, the ability to quickly develop and
maintain responsive, interactive applications has never been more important. This paper will further
analyze each component of the MERN stack, explore its practical applications, and compare its
performance with other development technologies to showcase its effectiveness in modern software
engineering.

Explanation about MERN:

The MERN stack is a full-stack JavaScript framework used for developing modern web applications.
It is composed of four main technologies: MongoDB, which functions as the database; Express.js,
which serves as the backend web framework; React.js, which manages the front-end user interface;
and Node.js, which provides the server-side runtime environment. Together, these components enable
developers to build dynamic, scalable, and efficient web applications entirely using JavaScript, from
front-end to back-end.

MongoDB:

MongoDB is a NoSQL database that stores data in a flexible, JSON-like format, making it well-suited
for modern web applications. Its schema-less structure allows for easy scalability and rapid
development, enabling developers to adapt to changing data requirements without complex
migrations. This flexibility makes MongoDB ideal for applications that need to handle large volumes
of data efficiently and require high performance and adaptability.

Express.js:

Express.js is a lightweight and flexible web application framework for Node.js that streamlines
server-side development. It offers a robust set of features for building APIs and handling HTTP
requests and responses efficiently. With built-in support for middleware, Express.js enables
developers to manage the request-response cycle more effectively, making it easier to implement
functionalities such as authentication, logging, and error handling in a modular and organized
manner.

React:

React.js is a powerful JavaScript library used for building user interfaces, especially well-suited for
single-page applications. It follows a component-based architecture, which encourages reusability,
modular design, and easier maintenance of code. One of React’s key features is its virtual DOM,
which optimizes rendering by updating only the parts of the Ul that have changed. This results in
improved performance and a smoother user experience during dynamic content updates.

Node.js:
Node.js is a JavaScript runtime environment that enables developers to execute JavaScript code on

1374 JNAO Vol. 16, Issue. 1: 2025

the server side. Built on Chrome's high-performance V8 engine, it features a non-blocking, event-
driven architecture that is ideal for building scalable and efficient network applications. Node.js
excels at handling multiple simultaneous connections, making it well-suited for real-time applications
such as chat servers, APIs, and streaming services.

Work Of the Components Data Flow:

In a MERN stack application, the data flow begins with the client-side (React), which interacts with
the server through API calls. These requests are handled by Express.js, the backend framework,
which processes the input, performs necessary logic, and communicates with the MongoDB database
to retrieve or store data. Once the required operations are completed, Express.js sends the appropriate
responses back to the React client. Throughout this process, Node.js acts as the runtime environment,
allowing JavaScript code to run on the server efficiently, enabling seamless communication between
the front end and back end. This structure ensures a smooth and consistent flow of data across the
application.

Development Efficiency:

Using JavaScript across the entire MERN stack streamlines the development process by creating a
unified and cohesive workflow. This consistency allows developers to work more efficiently, as they
can use the same language—JavaScript—for both client-side and server-side development.

As a result, developers can seamlessly switch between front-end and back-end tasks without the need
to learn or adapt to different programming languages. This not only reduces context-switching but
also simplifies debugging, enhances collaboration within teams, and accelerates the overall
development cycle.

PROPOSED MODEL

Sender
Username Fullname Name Recipient

| Name

Image § \‘ / [/
3
User @ Message —— Meslzage
MalD — ;| [\

/ N
/
/

Message Time
Content Stamp

\
\
\

Password Status

ER diagram

Figure 1: Proposed work

The image is a clear and structured Entity-Relationship (ER) diagram that represents the database
schema of a chat application. It highlights four primary entities: USER, CHAT, MESSAGE, and
MSER, each represented by yellow rectangular boxes. These entities are connected through diamond-
shaped relationship indicators labeled HAS, illustrating how they relate to each other.

Each entity includes relevant attributes displayed in oval shapes, with different colors used for visual
distinction. The USER entity contains attributes such as name, email, password, group, and
groupAd, each shown in unique colors like orange, blue, and green to enhance clarity. The CHAT

1375 JNAO Vol. 16, Issue. 1: 2025

entity includes attributes like isGroupChat and content, while the MESSAGE entity features
sender and timestamp. The MSER entity is also linked to USER and MESSAGE, indicating a
specific role or relationship in the system.

All attribute ovals are outlined with a thin black border, which separates them neatly from the
background and improves overall readability. This ER diagram effectively presents the structural
design of the chat application's database in a clean, organized, and visually appealing format.

METHODOLOGY

This image illustrates a structured development approach for building a chat application, represented
as a flowchart. The process begins by formulating a Problem Statement, which defines the core issue
the application aims to address. Following this, Requirements are clearly outlined to set the scope and
objectives of the project. The next step involves Designing the User Interface, ensuring the
application’s front-end is intuitive and user-friendly. Subsequently, the Backend is Set Up to manage
the server-side functionalities. With the backend in place, developers Create REST APIs to facilitate
communication between the frontend and backend. Simultaneously, the Frontend is Implemented,
focusing on the client-side experience. To enable instant communication, Real-Time Messaging
features are established. Afterwards, the Frontend is Integrated with the Backend, connecting all
system components. Notably, the flowchart contains a minor redundancy where integrate front end
with backend appears twice. Finally, the entire system undergoes a Testing Phase to ensure the chat
application performs reliably and meets user expectations. This methodical, step-by-step development
approach ensures organized progress from concept to a fully functioning chat solution.

Problem Statement
Examine the Cleveland dataset to determine if a person is at risk for heart disease. A person's heart
disease is represented by the number 1, and their absence of heart disease is represented by the

number 0.

Problem Define
Statement requirements
Set up the .. Design the

backend user interface
Create REST Implement the

APis front end

Integrate Set up real-tim

front end messaging

with backend
Tegrate front Test the chat
end with backend application

Figure 2: Development Approach

General Explanation:

A MERN stack chat application combines MongoDB, Express.js, React.js, and Node.js for seamless,
full-stack development. MongoDB manages data storage, Express and Node handle server logic, and
React delivers a responsive user interface. WebSockets enable real-time messaging, ensuring smooth,
interactive chat experiences.

1376 JNAO Vol. 16, Issue. 1: 2025

Layer-wise Role Description:

In a MERN chat app, MongoDB stores messages and users. Node.js executes backend code,
Express.js builds APIs and manages routes, and React.js powers dynamic interfaces. Socket.io with
Node enables instant message delivery, keeping conversations real-time without requiring manual
page refreshes.

Technical Workflow Perspective:

User actions on React’s interface send HTTP or WebSocket requests to Express.js, processed by
Node.js. Data operations occur in MongoDB. React’s dynamic rendering ensures smooth, responsive
message flow, delivering uninterrupted, real-time conversations.

Development Convenience Angle:

MERN’s JavaScript-only environment simplifies full-stack development, enabling teams to work
efficiently without switching languages. MongoDB’s flexible document model suits dynamic chat
data, while Express streamlines API creation. Node manages concurrent users, and React ensures a
responsive, engaging front-end chat experience.

Business Value Perspective:

The MERN stack offers businesses scalable, affordable, and maintainable solutions for real-time
communication. JavaScript unification reduces operational overhead, accelerates development, and
simplifies hiring. MongoDB’s scalability and React’s modern UI support growth, making it ideal for
startups and enterprises targeting real-time markets.

User Experience (UX) Perspective:

MERN-based chat apps offer instant message delivery, responsive interfaces, and dynamic
experiences. React ensures real-time updates without reloads. MongoDB quickly retrieves data, and
WebSocket maintain seamless communication. Features like typing indicators, notifications, and file
sharing create a smooth, reliable chat experience.

RESULTS:

In conclusion, the development and implementation of Web- Based Real-Time Chat Application
using the MERN Stack represents a groundbreaking achievement in the realm of modern
communication platforms. This project successfully harnesses the power and versatility of Mongo DB,
Express.js, React.js, Node.js to deliver a feature-rich, secure, and scalable solution that caters

to the dynamic communication needs of today's interconnected world.

The MERN Stack’s seamless integration and cohesive architecture have empowered the creation of a
real-time chat experience that goes beyond conventional boundaries. The use of WebSocket
technology ensures instant messaging, enabling users to engage in fluid con-versations with minimal
latency. The platform’s responsiveness and adaptability across various devices underscore its
commitment to user convenience and accessibility. New features that we look to add:

(1) Mailing service for verifying new users and a forgotten password option.

(2) Read receipts for messages.

(3) Delete and edit messages.

(4) Attach messages or files with messages.

1377 JNAO Vol. 16, Issue. 1: 2025

(5) Develop a mobile app to increase the user base.

Login-image: -

Slgnin Chathpp

Profile: -

CONCLUSION

The chat application delivers a modern, efficient, and highly flexible communication platform,
designed with the latest web technologies to meet the evolving demands of users and organizations
alike. Its primary strength lies in offering instant messaging, real-time communication, enhanced
security measures, group chat functionalities, and an intuitive user interface. By integrating
cutting-edge tools and frameworks, the system ensures reliable performance, scalability, and seamless
connectivity for users across various devices and networks.

Furthermore, this application holds significant market potential, particularly for businesses,
educational institutions, and social platforms seeking independent, customizable chat solutions.
The real-time messaging system not only enhances user engagement but also improves operational
efficiency in collaborative environments. With its scalable architecture and robust features, this chat

1378 JNAO Vol. 16, Issue. 1: 2025

application stands poised to become a preferred choice for organizations aiming to deliver secure,
private, and high-performance communication services tailored to their unique operational needs.

FUTURE SCOPE :
Other enhancements will be involved

1. Profile Picture Updating

2. Video call

3. large size

4. Conference call

5. Voice recording will be added

6. Improving different text style and font size
REFERENCES :

(1]
2]

https://www.ijraset.com/research-paper/development-of- chat-application
https://www.researchgate.net/publication/385964379 Web-

based real time chat application using MERN stack
https://www.scribd.com/document/647840397/final-report- on-chat-application-using-mern
https://www.suprsend.com/post/how-to-build-a-real-time- chat-app-with-mern-stack-and-
suprsend-javascript-sdk

https://github.com/RishiBakshii/mern-chat- app/blob/main/readme.md
https://github.com/tsengm6h6/chat-app-client-v2

